
Re-entrant and spin-glass-like behaviour of the Anderson lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 10475

(http://iopscience.iop.org/0953-8984/2/51/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/51
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 10475-10486. Printed in the UK 

Re-entrant and spin-glass-like behaviour of the 
Anderson lattice 

G Gangadhar Reddyf, A Ramakanth? andB K Ghatak$ 
t Department of Physics, Kakatiya University, Warangal 506 009, India 
$ Department of Physics and Meteorology, Indian Institute of Technology, 
Kharagpur 721 302, India 

Received 14 March 1990 

Abstract. The magnetic properties of intermediate valence systems described by the periodic 
Anderson model are studied within a mean-field approximation for a wide range of localized 
4f-level occupation n,. It is found that the linear susceptibility xI, shows divergence at two 
critical temperatures TcI and TLz. indicating instability in magnetic ordering. Ferromagnetic 
order exists for T,, S T S T,?, indicating a re-entrant behaviour. For another range of n,. the 
system exhibits spin-glass-like magnetic response with almost divergent non-linear sus- 
ceptibility as the external magnetic field goes to zero, at a temperature To where the linear 
susceptibility has a cusp-like behaviour. As n, is scanned, it is found that T,, and Tc2 merge 
for a particular value of 4f-level position. This temperature T, (= T,, = Tc2) is found to 
increase with the increase in hybridization between the localized and band states. It is 
observed that the linear response for T 2 To can be represented by a scaling relation. 

1. Introduction 

The intermediate valence state of the 4f ion in rare-earth compounds or alloys appears 
due to the quasi-degeneracy of two neighbouring valence states. A simplified description 
of the intermediate valence system is basedon the observation that two types of electrons, 
one moving in a wide band and the other in a narrow band, are present in the system 
(Lawrence et a1 1981, Czycholl1986, Newns and Read 1987). Interaction between these 
two types of electrons is predominantly reflected in the magnetic behaviour of these 
compounds. The interplay between the valence fluctuation and the ferromagnetic order 
(Nolting and Matlak 1984, Eyert and Nolting 1986, Nolting and Ramakanth 1986,1987, 
Gangadhar Reddy and Ramakanth 1986,1987) and the antiferromagnetic order (Leder 
and Muhlschlegell978, Stratkotter and Nolting 1987, Bulk and Nolting 1988) has been 
examined on the basis of the periodic Anderson lattice in a mean-field approximation. 
The existence and nature of the magnetic order depend on the occupation Itf of the 
localized 4f level and the effective Coulomb interaction among the 4f electrons (Leder 
and Muhlschlegel 1978, Gangadhar Reddy and Ramakanth 1986, 1987). When the 
valence of the rare-earth ion is nearly integral (nf = 1), magnetic order exists below the 
transition temperature, which decreases as the 4f-level position moves towards the 
centre of the wide band. For a certain range of parameter values, as the temperature is 
increased, a re-entrant magnetic transition has been noted (Leder and Muhlschlegel 
1978, Entel et a1 1978). When the system is driven into a state of lower occupation of the 
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4f level, the susceptibility shows a sharp peak at a finite temperature. A closer study of 
the magnetic behaviour of this situation reveals spin-glass-like behaviour (Gangadhar 
Reddy et a1 1989). Recent experimental results on C ~ C U ~ , ~ A ~ ~ , ~  (Rauschschwalbe et al 
1985) and CePd3Bo,3 (Dhar et a1 1989) also suggest the existence of a spin-glass-like 
state in the mixed valence phase. Hybridization between the localized and band states 
introduces an element of randomness in the magnitude of the local moment and the 
effective interaction between the moments at different sites. In contrast the spin-glass 
in the localized moment system has randomness only in the interaction between the 
moments at neighbouring sites. In this paper, we present a detailed analysis of the 
magnetic phase transition boundary as the occupation of the 4f level changes, based on 
the periodic Anderson model in a mean-field approximation. The evolution of the re- 
entrant phase and spin-glass-like phase is studied following a detailed calculation of the 
magnetization and the linear and non-linear magnetic responses. 

2. Theory 

The Hamiltonian of the periodic Anderson model can be written as the sum of three 
terms, 

H = H ,  + H , + H , .  (2.1) 
The first term 

describes the uncorrelated conduction electron states. Here d& and diu are, respectively, 
the creation and annihilation operators of an electron in the conduction band with spin 
0 at site R;;  Ti, are the usual hopping integrals, related to the Bloch energies ~ ( k )  by 

h = SgpBB is the magnetic energy, with S the electron spin, g the Lande g-factor, pB the 
Bohr magneton and B the external magnetic field; and Z ,  is a sign factor, 

The Hamiltonian Hf describes a periodic array of strongly correlated 4f electrons, 

Here nfiu = f & f j u  is the number operator for the 4f electrons, with f &  and fju the 
corresponding creation and annihilation operators, respectively; the 4f-level position Ef 
is measured relative to the centre of gravity of the conduction band; and U is the intrasite 
Coulomb repulsion. 

The final term H ,  describes the hybridization, 

ko fiu e+ik.RI). H ,  = " / ~ ( f & d ~ , e - " ' ~ j  Vki + d i  
i ,k ,o  

The hybridization allows the hopping of an electron from the localized 4f level to the 
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conduction band and vice versa; the hybridization strength Vkjis taken to be independent 
of the lattice site. 

The Hamiltonian (2.1) cannot be solved exactly. In order to solve the problem, 
in the literature, several approximate methods have been proposed (for reviews see 
Czycholl 1986, Newns and Read 1987). In the present investigation we use the mean- 
field approximation (Leder and Muhlschlegel 1978). In this approximation the con- 
duction band occupation is given by 

and the 4f-level occupation by 

Here Eu(k, t )  are the single-particle energies, which are the poles of the Green functions 
and are given by 

E u ( k ,  t )  = b{E,, + ~ , ( k )  * [(E,, - E,(k))’ + 4V2]”*} (2.9) 

with E,, = E, + Un,-,, and f ( E )  = {exp[(E - p)P]  + l}-’ is the Fermi function with 
p = 1/KBT. The chemical potential p is determined from conservation of the total 
number of electrons per lattice site, 

n = E Zu(nfu + % U ) .  (2.10) 

Equations (2.7), (2.9) and (2.10) constitute the equations for the determination 
of p and nf, self-consistently as functions of the model parameters. For numerical 
simplification we have used a constant density of states for the conduction band, 

(2.11) 

where W is the bandwidth of the d state. 

3. Magnetization 

The self-consistent equations (2 .7) ,  (2.9) and (2.10) have been solved numerically for 
the total number of electrons per lattice site n = 1 with and without the magnetic field 
as a function of temperature for various sets of model parameters, namely 4f-level 
position E f  and hybridization strength V .  The parameters of the model are normalized 
in terms of bandwidth W. Throughout the calculation we have taken U = 0.25. The 
magnetization is defined as 

where 
M ( h ,  T )  = lBm(h,  T )  

m(h, T )  = m,(h, T )  + mf(h ,  T ) .  

(3.1) 

(3 * 2) 
Here mf and md are dimensionless magnetizations for the localized and conduction 
electrons, which we define as 

w = E Zunfo  md = E zundu.  (3.3) 
U U 

In the absence of an external magnetic field, the magnetization due to the conduction 
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Figure 1. The dependence of the localized spon- 
taneous magnetization m, as a function of the 4f- 
level occupationn,forvariousvaIuesof V :  (a )  V = 

“ f  . 0.05, ( b ) d . l .  (c)O.lSand(d)0.25 

electrons is always found to be much smaller than that due to the localized electrons for 
any choice of model parameters and so m(0, T)  = mf(O, T) .  In the following, the results 
are given in terms of mf( T),  which depend sensitively on the model parameters and the 
temperature. At T = 0 the magnetic moment varies linearly with nf when nf is large 
(figure 1). But near a critical value of nf, which depends on the values of the hybridization 
and the Coulomb interaction, the moment decreases rapidly; and below the critical 
value of nf, no spontaneous magnetization exists. A system with nf less than and close 
to the critical value of nf exhibits re-entrant spin-glass-like behaviour as discussed in the 
next section. The thermal behaviour of the spontaneous magnetization mf per unit 4f- 
level occupancy is shown in figure 2 for different positions of E, and for the same 
hybridization constant V = 0.1. For nf close to 1, the ferromagnetic state at T = 0 is close 
to saturation (mi = nf) and goes to zero monotonically as Tapproaches T,, the transition 
temperature. As E, increases towards the d-band centre, nf decreases and the state at 
T = 0 is an unsaturated one with mf < nf but still exhibiting normal T dependence. As 
nf decreases further, a different thermal behaviour of mf is found. For E, = -0.3 the 
magnetization goes up as Tis increased from T = 0 and passes through a broad maximum 
before vanishing at T = T,. Such behaviour of mf persists with further increase of Ef. 
The spontaneous magnetization at T = 0 falls off faster and ultimately vanishes at a 
particular value of E,. For E, greater than this value, two transitions are observed, 
marking a re-entrant type of behaviour. The magnetization that appears at the higher 
transition temperature disappears at the lower transition temperature. The re-entrant 
phenomenon occurs within a small region of E, (or nf). As the 4f-level occupation is 
depleted further, no ferromagnetic state appears at any temperature. The thermal 
variation of nf for the above values of Ef  is given in figure 3 .  We note the different nature 
of the thermal dependence of nf. For large values of n,, temperature increase causes slow 
depopulation. On the other hand, for smaller value of n,, average occupancy goes up 
with increasing temperature, For a range of values of nf where the re-entrant magnetic 
transition is found, two kinks appear in nf versus T behaviour. At higher temperatures 
or still smaller values of n,, almost a linear increase of 4f-level occupancy is observed. 

4. Linear and non-linear magnetic responses 

The static magnetic susceptibility in the state without magnetic order is given by 
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Figure 2. The normalized 4f magnetization as a function of temperature for various values 
of Er: (A) in the region where mr has normal T dependence and (B) in the region where ml 
has peak-like behaviour. V = 0.1. 

(4.3) 
2 B I 2 - 4 N  - -2 

1 z3 = 

m c c o s h - 2 { 1 p [ E ( k ,  t )  - p ] }  
d E f  

2 [f (-I2 a E ,  
d2E(k, t )  2 

aE: cosh-2{@[E(k, t )  - p ] }  - 
k f = l  

with 

E(k, t )  = ; {E,  + ~ ( k )  5 [ ( E ,  - &(k))’  + 4V2]1/2} (4.5) 

E ,  = Ef + U n f / 2 .  (4.6) 

The ferromagnetic phase sets in when the Stoner criterion U13 = 1 is satisfied. The 
susceptibility diverges at T,, which is determined by the equation 

UI3(T,)  = 1. (4.7) 

For large occupation of the 4f level, there is only one value for T,, but within a range of 
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Figure 3. Thermal behaviour of n,: (A) same par- 
ameter values as those for figure 2(A); (B) those 
for figure 2(B) ; and (C) those for figure 6. 

smaller occupation, two solutions are found (figure 4). This is consistent with the 
magnetization result (figure 2(B)). The locus of T, for the region of Ef where re-entrant 
behaviour is found is shown in figure 5. As E, increases, at a particular value of Ef, the 
two T, values merge and this temperature T,, = Tc2 is defined as Tg.  The variation of Tg 
with hybridization is shown in the inset of figure 5. For a given V ,  when Ef increases 
beyond the critical value at which the two T, values are the same, the susceptibility 
exhibits a cusp-like behaviour at a temperature To (figure 6). As nf decreases, the height 
of the peak decreases whereas To goes up. For very small values of nf the susceptibility 
is nearly constant and Pauli-like at low temperature. In all cases, at high temperature, 
T > To, the susceptibility has a Curie-Weiss-like decrease. An interesting correlation 
between To and the inverse of the susceptibility at T = 0 is displayed in the inset of figure 
6. This bears a striking resemblance to the experimental results (Klaasse et a1 1981) 
discussed by Newns and Read (1987). 

In order to determine the magnetic state of a system that shows a maximum in xo at 
a temperature To, the magnetization and the non-linear response are evaluated. The 
magnetization at a finite field with nf = 0.3303 at T = 0 passes through a maximum as T 
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0.01 0.02 0.03 0.04  0.05 

KBT . Figure4. The linear susceptibility xli as a function 
of temperature for different values of Er: (a) E,  = 
-0.23, (b) -0.215, (c) -0.20 and (d) -0.185. 

Figure 5. The Curie temperature T, as a function of 4f level E,  for different values of the 
hybridization strength V :  (a) V = 0.05, (b) 0.1, (c) 0.15 and (d) 0.2. Inset: Tg as a function 
of v. 

is increased (figure 7). The maximum shifts to higher values of temperature as the 
magnetic field is increased. In the limit of small field, 

M ( B )  = x o B  + x 2 B 3  

x2/& = [m(h) /h  - X0/P2Bl/h2 

(4.8) 

(4.9) 

where x 2  is the non-linear susceptibility. Defining 

the numerical results for x2 for different fields are displayed in figure 8 along with xo. 



10482 G Gangadhar Reddy et a1 

I I I 1 I 

0 0.01 0.02 0.03 0.OL 0.0s 

KBT - 
Figure 6 .  The temperature dependence of the linear susceptibility x,, for different values of 
E,:  (a) E , =  -0.175. (b) -0.17, (c) -0.165, (d) -0.15 and (e) -0.1. V = O . l .  Inset: the 
inverse susceptibility at T = 0 versus the peak temperature. 

L I I I I I 

0.01 0.02 0.03 0.OL 0.05 

KBT - 
Figure 7. The temperature variation of the field-dependent magnetization for different 
values of the magnetic energy h: (a) h = 0.001, (b) 0.002, (c) 0.003, (d) 0.004 and (e) 0.005. 
E,  = -0.18 and V = 0.1. 
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KBT- 

Figure 8. The non-linear susceptibility x 2  (broken curves) and the linear susceptibility xi, 
(full curves) as a function of temperature for different values of the magnetic field strength 
h:  (a) h = 0.001, (b) 0.002, (c) 0.003, (d) 0.004 and (e) 0.005. E,  = -0.18 and V = 0.1 

This shows that x2(h)  has a sharp dip at To where xo has a maximum, and its magnitude 
increases very steeply as the field goes down. In the limit of h - 0, x 2  tends to diverge 
at T = To. This is more evident in the plot of the reduced non-linear response 

(4.10) 
as a function of the square of the magnetic field at temperature T = To. For T S To, the 
slope as h - 0 is finite, but for T = T,, it grows to an infinitely large value (figure 9). The 
above magnetic behaviour closely mimics that of the spin-glass phase. As Ef approaches 
the centre of the band, both linear and non-linear responses of the system are diminished. 

To is found to be 
represented by the formula (Muzumder and Bhagat 1987) 

(4.11) 
where t = ( T  - To)/To, y is a critical exponent and A is a constant. In order to examine 
whether such a scaling relation exists here also, in figure 10(A) we have plotted ln(x) as 
a function of ln(t), where x = 1/zo(T) - l/xo(To). The above relation is found to be 
valid for a small region of temperature, similar to the behaviour of the susceptibility in 
traditional spin-glass systems (Muzumder and Bhagat 1987). When the above results 
are scaled in terms of the non-linear scaling variable t' = ( T  - To)/T an improved 
formula 

(4.12) 

fits the results over a wider range of temperature (figure 10(B)). This is similar to the 
recent result on an Ising spin-glass where the relation (4.12) is found to be obeyed for 
the entire range of temperature (Basu and Ghatak 1990). 

R = 1 - pHm(h)/h~" 

In conventional spin-glass systems the magnetic responses at T 

X d T )  = xo(To>t-Y/[Xo(To>A 4- t - Y I  

x o ( T )  =xo(To)(l - t ') t '- ' /[xo(To)A + (1 - t ' ) t ' - Y ]  



10484 G Gangadhar Reddy et a1 

+ 1.0, 
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Figure 9. Non-linear response R = 1 - ,u&m(h)ihX,, as a function of the square of the 
magnetic field strength at different temperatures: (a) KBT = 6 45 x lo-'. (b) 8.6 x lo-', (c) 
9.89 x and ( e )  11.33 X lo-'. E,  = -0.18 and V = 0.1. Curve (c) is for 
T = To. 

(d) 11.18 x 

-10- 
-3.5 -2.5 -1.5 -0.5 0.5 1.5 

I n l t )  ------+ 

-10 -gL 1.5 ~ 

- 3  5 -2.5 -1 5 -0.5 05 

Figure 10. The scaling behaviour of the linear response: (A) for equation (4.11) and (B) for 
equation (4.12). The value of T/T,, is marked on the top of each figure. 

5. Discussion of the results 

The location of the 4f level with respect to that of the conduction band is the crucial 
factor in determining the properties of the model system (Leder and Muhlschlegell978, 
Gangadhar Reddy and Ramakanth 1986, 1987, Nolting and Ramakanth 1987). When 
the 4f level is well below the bottom of the conduction band, the effect of the fluctuations 
is very small, nf = 1, so that the system is integral valent with the magnetic configuration. 
As the 4f level approaches the conduction band, the fluctuations in valence increase and 
the system becomes mixed valent, so that nf deviates substantially from the integral 
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value. When the 4f level is pushed further into the band, 4f-level occupation is depleted 
to zero, so that the system is again in the integral valence phase but with the non-magnetic 
configuration. Naturally, the spontaneous magnetization should undergo qualitative 
changes as the 4f level is swept. Initially, in the integral or near-integral valence phase, 
mf decreases monotonically with increasing T, going to zero at a critical temperature T, 
(figure 2). The anomalous thermal behaviour of the magnetization for smaller occu- 
pation of the 4f state can be correlated with the thermal behaviour of nf  (figure 3). When 
mf( T)  decreases monotonically (figure 2(A)), nf( T) also decreases monotonically with 
increasing T (figure 3(A)). When mf( T )  displays a peak-like behaviour (figure 2(B)), 
nf( T) initially increases with increasing T and then decreases, so that it also has a peak- 
like behaviour (figure 3(B)) though not as prominently as mf(T). The reduction in nf  
leads to a quenching of the local moment so that the spontaneous magnetization will 
decrease. On the other hand, when the 4f level is near or inside the conduction band at 
low T ,  n t (T)  increases with increasing T and there are two competing mechanisms: (i) 
4f-level occupation trying to stabilize magnetic order and (ii) thermal agitation trying to 
destabilize it. As Tincreases, nf  increases, and so for low T the first mechanism prevails 
and therefore mf( T)  increases. For higher T, the second one dominates and therefore 
mf(T) decreases, resulting in a peak-like structure. The result that as the 4f level is 
further moved up, the peak in mf sharpens and shifts to higher temperature, can be 
understood on similar lines. As E, moves up, the 4f-level occupation is depleted so it 
requires higher temperature for the stability of the local moment. Again, if T i s  too 
large, the magnetization is destroyed due to the thermal agitation. Therefore, the region 
in temperature where mf( T )  is finite becomes progressively smaller with increasing E,, 
resulting in a sharper peak. Further, the increase in the rate of change of nf with T (figure 
3) is reflected in the shfiting of the peak in m, to higher temperature. 

When the 4f level is sufficiently deep inside the band, its occupation at T = 0 is too 
small to support magnetic order. With increasing T ,  nf increases, and at a critical 
temperature, the magnetization becomes non-zero. On further increase of Z, mi displays 
peak-like behaviour. vanishing at a higher T ,  another critical temperature (the curve 
with Ef = -0.185 in figure 2(B)). This re-entrant behaviour is also confirmed by the 
existence of two singularities in the paramagnetic susceptibility (figure 4). The occur- 
rence of the re-entrant behaviour in this model has been mentioned earlier (Leder and 
Muhlschlegel 1978) and it also appears in the presence of electron-phonon interaction 
(Entel et a1 1978). As the hybridization strength V increases, the lower transition 
temperature T,, increases and the higher one Tc2 decreases, so that the region in 
temperature where the spontaneous magnetization is non-zero decreases. Since the 
increase in Venhances the valence fluctuations, the situation is unfavourable to magnetic 
ordering though nf  is large enough (Gangadhar Reddy and Ramakanth 1986). To 
stabilize the magnetic ordering, nf has to be slightly increased and this is accomplished 
by increasing T .  Therefore, T,, increases. A large V and higher T both try to destabilize 
magnetism and therefore T,, decreases with increasing Vfor a given Ef (figure 5 ) .  With 
increasing V, the value of nf  at which the magnetism exists increases (figure 1). As a 
result, the temperature Tg increases with increasing V (inset of figure 5). The peak 
temperature in xo  and its magnitude at T = 0 depend on the value of E,, that is, nf  (figure 
7). Further, these two have an interesting scaling relation (inset of figure 6), which is 
also recognized in experiments (Klaasse et a1 1981). 

Since the rare-earth ions fluctuate between magnetic and non-magnetic con- 
figurations, when Ef is inside the conduction band, the valence fluctuations are large and 
consequently the local moment fluctuates. These incoherent fluctuations of the magnetic 
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moment introduce the element of randomness. The magnetic behaviour of the system 
bears a close resemblance in many respects to that of conventional spin-glass systems. 
The peak-like behaviour of the field-dependent magnetization as a function of tem- 
perature (figure 7), the almost divergent non-linear magnetic susceptibility (figure 8) 
(Suski 1977, Chalupa 1977, Ghatak 1986), a very large non-linear response R near To 
and its magnetic field dependence (figure 9) (Omari et a1 1983, Ghatak 1986) and the 
scaling behaviour of linear response (figure 10) (Muzumder and Bhagat 1987) are 
very characteristic of a spin-glass system with randomness in the interaction between 
moments. The results as derived here suggest that the fluctuation of moment due to 
valence fluctuations can give rise to spin-glass-like behaviour. 

6. Conclusions 

Based on the periodic Anderson lattice, with mean-field approximation, the magnetic 
state and its behaviour are found to depend strongly on the occupancy of the 4f level. 
Depending upon the occupancy of the 4f level the long-range magnetic order, the re- 
entrant magnetic phase transition, the spin-glass-like magnetic state and the para- 
magnetic (Pauli-like at low temperature) state are found to follow. Improved approxi- 
mation of the intra-atomic Coulomb interaction term in the not-too-large U limit is not 
expected to change the scenario of the above magnetic phase too drastically. 
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